
The KudOS Architecture for File Systems
Andrew de los Reyes, Chris Frost, Eddie Kohler, Mike Mammarella, and Lei Zhang

University of California, Los Angeles

{adlr,frost,kohler,mikem,leiz}@cs.ucla.edu

I NTRODUCTION

For robustness, stability, and reboot speed, file system implementa-
tions must ensure that the file system’s stored image is kept consis-
tent or easy to return to consistency. Advanced consistency mech-
anisms such as soft updates [2] and journalling make this possible;
unfortunately, they are generally tied to a particular file system,
and can’t be ported or adapted without significant engineering ef-
fort. Furthermore, interfaces likefsync() give user code only
coarse control over consistency. Applications with custom consis-
tency and performance requirements get little help from conven-
tional file systems, which either impose high overhead (data jour-
nalling) or don’t guarantee data consistency (soft updates, for ex-
ample, ensures metadata consistency only).

We propose a new file system implementation architecture,
called KudOS, wherechange descriptorstructures represent any
and all changes to stable storage. File systems generate change de-
scriptors for all writes, then send them to block devices for eventual
commit. Each change descriptor stores the old state of the block and
the change’sdependencies—other change descriptors that must be
committed before it is safe to commit this change. Explicit depen-
dencies let KudOS modules preserve necessary file system invari-
ants without understanding the file system itself; the old state lets
KudOS roll back changes when necessary to break cyclic block de-
pendencies. Change descriptors can implement many consistency
mechanisms, including soft updates and journalling.

KudOS is decomposed into fine-grained modules which gener-
ate, consume, forward, and manipulate change descriptors. A par-
ticular innovation of the module design is the separation of the low-
level specification of on-disk layout from higher-level file system-
independent code, which operates on abstract disk structures.

We have implemented a prototype of the KudOS architecture
as part of a new operating system. Although results are prema-
ture and performance has not been measured, change descriptors
have helped us construct consistent file system structures. Our jour-
nalling module should automatically add journalling to any file sys-
tem, and combinations of simple modules can support, for example,
correct consistency on RAID over loop-back devices. Eventually,
we plan to support user-defined dependencies, allowing applica-
tions to define consistency protocols for the file system to follow.

CHANGE DESCRIPTORS

Each in-memory modification to a cached disk block in KudOS
has an associated change descriptor. Different change types corre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 . . . $5.00.

struct chdesc {
BD_t *device;
bdesc_t *block;
enum {BIT, BYTE, NOOP} type;
union {

struct {
uint16_t offset;
uint32_t xor;

} bit;
struct {

uint16_t offset, length;
uint8_t *data;

} byte;
};
struct chdesc *dependencies[];

/* ... */ };

Figure 1: Partial change descriptor structure.

spond to different forms of change descriptors; the change descrip-
tor for a flipped bit—such as in a free-block bitmap—contains an
offset and mask, while larger changes contain an offset, a length,
and the new data. The change descriptor’s dependencies point to
other change descriptors that must precede it to stable storage. A
change descriptor can be applied or reverted to switch the cached
block’s state between old and new as necessary. Each change de-
scriptor applies to exactly one block. Figure 1 gives a simplified
version of the structure. The ability to revert and re-apply change
descriptors is inspired by the soft updates system in BSD’s FFS [2],
but generalized so that it is not specific to any particular file system.

When a KudOS module first generates change descriptors to
write to the disk, it specifies write ordering requirements similar
to those of soft updates. For example, Figure 2 depicts change de-
scriptors that allocate and add a new block to an inode. The mod-
ule passes these change descriptors to another module closer to the
disk. This second module can inspect, delay, and even modify them
before passing them on further. For instance, the write-back cache
module holds on to blocks and their change descriptors instead of
forwarding them immediately. When evicting a block and asso-
ciated change descriptors, the write-back cache enforces an order
consistent with the change descriptor dependency information.

Soft updates, journalling, and many application-specific consis-
tency models all correspond to different change descriptor arrange-
ments, so these features can be added to the system as modules
which appropriately connect or reconnect the change descriptors.
For example, the change descriptors in Figure 2 can be transformed
to provide journalling semantics. The original four change descrip-

Clear

AllocAttachSize

Figure 2: Soft updates change descriptor graph, including the depen-
dencies for adding a newly allocated block to an inode. Writing the
new block pointer to an inode (Attach) depends on initializing the block
(Clear) and updating the free block map (Alloc). Updating the size of
the inode (Size) depends on writing the block pointer.

Complete Commit

ClearJClear

Alloc

Attach

Size

AllocJ

AttachJ

SizeJ

Original FS data Journal data

Figure 3: Journal change descriptor graph for the change in Figure 2.
Empty circles are “NOOP” change descriptors with no associated block
data.

tors are modified to depend on a journal commit record, which de-
pends on blocks journalling the changes. Once the actual changes
commit, the journal record is marked as completed. Figure 3 shows
these transformed change descriptors. This single journalling mod-
ule can attach to any file system module; it performs transforma-
tions incrementally as change descriptors arrive.

Further, by changing our journal module to journal only change
descriptors that modify file system metadata—and by adding ad-
ditional dependencies to prevent premature reuse of blocks—we
could even obtain metadata-only journalling. The journal module
can distinguish metadata change descriptors because of the LFS in-
terface described below. Other block device layering systems, like
GEOM [1] or JBD in Linux, would or do need special hooks into
file system code to determine what disk changes represent meta-
data in order to do metadata-only journalling. Change descriptors
and the LFS interface allow us to do this automatically.

FILE SYSTEM M ODULE I NTERFACES

A complete KudOS configuration is composed of many modules.
By breaking file system code into small, stackable modules, we
are able to significantly increase code reuse. We add an additional
interface that helps to divide file system implementations into com-
mon (reusable) code and file system-specific code. We call this in-
termediate interface the “Low-level File System” (LFS). This new
interface is a departure from other stackable module systems, like
FiST [3], which stack higher-level operations.

The LFS interface has functions to allocate blocks, add blocks to
files, allocate file names, and other file system micro-ops. A module
implementing the LFS interface should define how bits are laid out
on the disk, but doesn’t have to know how to combine the micro-ops
into larger, more familiar file system operations. A generic VFS-
to-LFS module decomposes the larger file write, read, append, and
other standard operations into LFS micro-ops. This one module can
be used with many different LFS modules implementing different
file systems.

Figure 4 shows a contrived example taking advantage of the LFS
interface and change descriptors. A file system image is mounted
with an external journal, both of which are loop devices on the root
file system, which uses soft updates. The journalled file system’s or-
dering requirements are sent through the loop device as change de-
scriptors, allowing dependency information to be maintained across
boundaries that might otherwise lose that information. In contrast,
without change descriptors and the ability to forward change de-
scriptors through loop devices, BSD cannot express soft updates’
consistency requirements through loop-back file systems.

block resizer

ide hda

wbcache

josfs-1josfs-0

uhfs uhfs

journal

loop loop

classifier

application

VFS

VFS VFS

VFS VFS

LFS LFS

BD

BD BD

LFS

BD

LFS

BD

BD

LFS

BD

LFS

BD

BD

BD

BD

BD

/ /loop

journal data

/fs.journal /fs.img

Figure 4: A running KFS configuration./ is a soft updated file system
on an IDE drive;/loop is an externally journalled file system on loop
devices.

FUTURE WORK

We would ultimately like to extend the change descriptor APIs into
user space, allowing applications like database servers to specify
minimal and precise data dependencies for order-sensitive data.
Application-defined change descriptors could improve the perfor-
mance and correctness of applications requiring complicated con-
sistency semantics, although there are many issues to consider; for
instance, we must prevent misbehaving or malicious applications
from creating excessive numbers of change descriptors, or setting
up dependencies such that certain change descriptors stay in the
system indefinitely.

We also plan to study change descriptors’ performance and
memory overhead implications. While we believe end-to-end disk
performance will remain similar to native implementations of soft
updates and journalling, we would like to better evaluate our imple-
mentation to minimize the impact of change descriptors on system
performance. In addition, we plan to implement an ext3-like file
system and a transactional file system to demonstrate the utility of
change descriptors and modules in KudOS.

REFERENCES

[1] GEOM – modular disk I/O request transformation frame-
work. http://www.freebsd.org/cgi/man.cgi?
query=geom&sektion=4 .

[2] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N.
Soules, and Yale N. Patt. Soft updates: a solution to the meta-
data update problem in file systems.ACM Transactions on
Computer Systems, 18(2):127–153, 2000.

[3] Erez Zadok and Jason Nieh. FiST: A language for stackable
file systems. pages 55–70. USENIX, June 2000.

http://www.freebsd.org/cgi/man.cgi?query=geom&sektion=4
http://www.freebsd.org/cgi/man.cgi?query=geom&sektion=4

